Role of Ras-ERK1/2 Signaling
نویسندگان
چکیده
Background—Reactive oxygen species play a critical role in inducing apoptosis. The small GTPase p21 Ras and the ERK1/2 MAPK have been proposed as key regulators of the signaling cascade triggered by oxidative stress (H2O2). Harvey-Ras (Ha-Ras) and Kirsten-Ras (Ki-Ras) isoforms are so far functionally indistinguishable, because they activate the same downstream effectors, including ERK1/2. Moreover, ERK1/2 signaling has been involved in both protection and induction of apoptosis. Methods and Results—Human umbilical vein endothelial cells (HUVECs) were subjected to H2O2, and apoptosis was detected by fluorescence-activated cell sorting analysis, fluorescence microscopy, and caspase-3 activation. Transfection of Ha-Ras and Ki-Ras genes in HUVECs was performed to evaluate the response to H2O2. We have found that, whereas Ha-Ras decreases tolerance to oxidative stress, Ki-Ras has a potent antiapoptotic activity. Both effects are mediated by ERK1/2. Tolerance to H2O2 is encoded by a unique stretch of lysines at the COOH terminus of the Ki-Ras, lacking in Ha-Ras, and it is relatively independent of the farnesylated anchor. Inhibition of p21 Ras signaling by farnesylation inhibitors increased the resistance to apoptosis in Ha-Ras–expressing cells. Conclusions—These findings explain the opposite effects of ERK1/2 stimulation on apoptosis found in different cell types and suggest that local activation of ERK1/2 signaling may account for the opposing response to oxidative stress by Ha-Ras or Ki-Ras–expressing cells. Modulation of cell reactivity to oxidative stress by p21 Ras points to the specific and predictive effects of Ras inhibitors in vivo as potential therapeutic drugs in disorders produced by increase of reactive oxygen species inside the cells. (Circulation. 2002;105:968-974.)
منابع مشابه
Protection of human endothelial cells from oxidative stress: role of Ras-ERK1/2 signaling.
BACKGROUND Reactive oxygen species play a critical role in inducing apoptosis. The small GTPase p21 Ras and the ERK1/2 MAPK have been proposed as key regulators of the signaling cascade triggered by oxidative stress (H2O2). Harvey-Ras (Ha-Ras) and Kirsten-Ras (Ki-Ras) isoforms are so far functionally indistinguishable, because they activate the same downstream effectors, including ERK1/2. Moreo...
متن کاملInvolvement of ERK1/2 signaling in proliferation of eight liver cell types during hepatic regeneration in rats.
It has been well established that ERK1/2 signaling, often subdivided into nine types of pathways, can regulate the hepatocyte proliferative response during liver regeneration. However, the effect of ERK1/2 signaling on the proliferation of other hepatic cell types remains unclear. We isolated and purified 8 liver cell types at 10 time points after 2/3 hepatectomy in adult rats. For each cell ty...
متن کاملFunctional Integration of the Conserved Domains of Shoc2 Scaffold
Shoc2 is a positive regulator of signaling to extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). Shoc2 is also proposed to interact with RAS and Raf-1 in order to accelerate ERK1/2 activity. To understand the mechanisms by which Shoc2 regulates ERK1/2 activation by the epidermal growth factor receptor (EGFR), we dissected the role of Shoc2 structural domains in binding to its sign...
متن کاملERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially
BACKGROUND The mitogen-activated protein (MAP) kinases p44ERK1 and p42ERK2 are crucial components of the regulatory machinery underlying normal and malignant cell proliferation. A currently accepted model maintains that ERK1 and ERK2 are regulated similarly and contribute to intracellular signaling by phosphorylating a largely common subset of substrates, both in the cytosol and in the nucleus....
متن کاملTanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...
متن کامل